

Referring Expression Comprehension

Introduction

- We trained several models to perform a visual-language task Referring Expression Comprehension
 - Utilized a pre-trained model called FLAVA
 - Built an encoder-decoder model and a decoder-only model
- Due to limited resources (GPUs), we cannot perform larger scale training
 - Limited the epoch and sample size to minimum

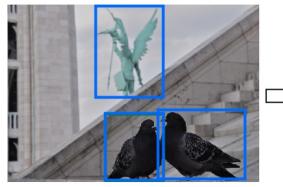
Task : Referring Expression Comprehension

- Given an image and a set of text captions, localizing a target object in the image described by the referring expression phrased in natural language
- REC is important for other vision-language tasks such as Visual Question Answering and Visual Dialogue

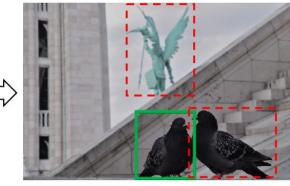
Expression: a lady standing next to a man wearing a blue suit and tie

Whole image and region proposals

Chosen region in green



Whole image and region proposals



Chosen region in green

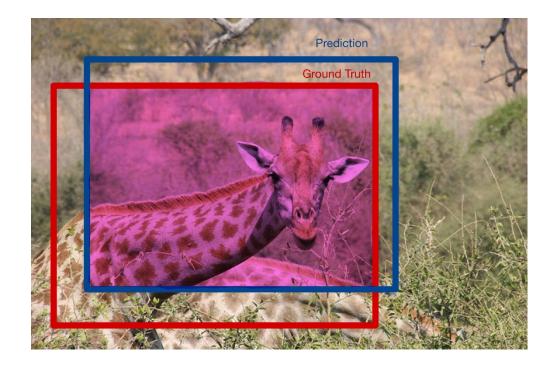
Expression: bird directly below light blue statue

Data

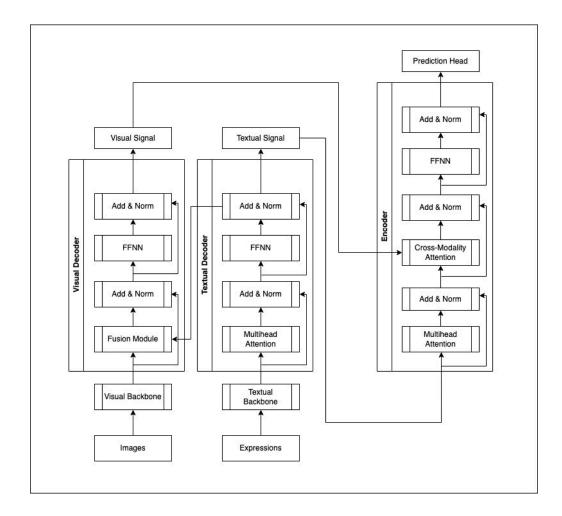
- We used the RefCOCO family of datasets (RefCOCO, RefCOCO+, RefCOCOg). RefCOCO family are the annotations on top of MSCOCO (Common Objects in Context) dataset
- RefCOCO and RefCOCO+ expressions are strictly appearance-based descriptions (i.e., "person to the left" is an invalid description)
- Due to limited resources, we are only allowed to train on 50k examples from RefCOCO dataset
 - Very insufficient data size. Most VL models are trained on millions of samples

Evaluation Metric

- Intersection over Union (IoU) is always used in object detection task
- It specifies the amount of overlap between the predicted and ground truth bounding box
- Widely used standard would be Acc@0.5 / Precision@0.5, which means correct classification if IoU > 0.5



1 – Encoder-Decoder Model - Introduction



1 – Encoder-Decoder Model - Introduction

lass RECEncoder(nn.Module):

def __init__(self, n = 2, nhead = 8, hidden_dim = 768):

super().__init__()

self.hidden_dim = hidden_dim
self.niead = nhead
self.n = n
self.text_encoder = AutoModel.from_pretrained('bert-base-uncased')
self.visual_encoder = ResNetFestureModelCoutput_layer='avgpool')
self.hidden_size = 2048
self.hidden_layer_1 = n.linear(self.image_hidden_size, 768)

self.text_attentions = nn.ModuleList()
self.text_FFNNs = nn.ModuleList()
self.text_norms1 = nn.ModuleList()
self.text_norms2 = nn.ModuleList()

self.visual_attentions = nn.ModuleList()
self.visual_FFNNs = nn.ModuleList()
self.visual_norms1 = nn.ModuleList()
self.visual_norms2 = nn.ModuleList()
self.dropout = nn.Dropout(0.1)

for i in range(self.n):

self.text_attentions.append(nn.MultiheadAttention(self.hidden_dim, self.nhead, 0.1))
self.text_norms1.append(nn.LayerNorm(self.hidden_dim))
self.text_FFNNs.append(nn.LayerNorm(self.hidden_dim))
self.text_norms2.append(nn.LayerNorm(self.hidden_dim))

self.visual_attentions.append(nn.MultiheadAttention(self.hidden_dim, self.nhead, 0.1))
self.visual_norms1.append(nn.LayerNorm(self.hidden_dim))
self.visual_nFKNNs.append(nn.Linear(self.hidden_dim, self.hidden_dim))
self.visual_norms2.append(nn.LayerNorm(self.hidden_dim))

def forward(self, image, expr):

text_output = self.text_encoder(**expr)
text_feature = text_output.last_hidden_state[:, 0, :]
img_feature = self.hidden_layer_1(self.visual_encoder(image))

for text_attention, tFFNN, tnorm1, tnorm2, visual_attention, vFFNN, vnorm1, vnorm2 in zip(self.text_attentions, self.text_FFNNs,

attn_output, _ = text_attention(text_feature, text_feature, text_feature)
 attn_output = tnorm1(text_feature + self.dropout(attn_output))
 text_feature = tnorm2(self.dropout(tfFNN(attn_output)) + attn_output)

visual_attn_output, _ = visual_attention(img_feature, text_feature, text_feature) visual_attn_output = vnormfiing_feature + self.dropout(visual_attn_output)) img_feature = vnormf2celf.dropout(vFFNK(visual_attn_output)) + visual_attn_output)

return img_feature, text_feature

class RECDecoder(nn.Module):

def __init__(self, n = 2, nhead = 8, hidden_dim = 768):

super().__init__()

self.hidden_dim = hidden_dim
self.nhead = nhead
self.n = n

self.attentions = nn.ModuleList()
self.EDattentions = nn.ModuleList()
self.FENNs = nn.ModuleList()
self.norms1 = nn.ModuleList()
self.norms2 = nn.ModuleList()
self.norms3 = nn.ModuleList()

self.dropout = nn.Dropout(0.1)

for i in range(self.n):

self.attentions.append(nn.MultiheadAttention(self.hidden_dim, self.nhead, 0.1))
self.Elattentions.append(nn.MultiheadAttention(self.hidden_dim, self.nhead, 0.1))
self.norms1.append(nn.LayenNorm(self.hidden_dim))
self.norms2.append(nn.LayenNorm(self.hidden_dim))
self.norms3.append(nn.LayenNorm(self.hidden_dim))

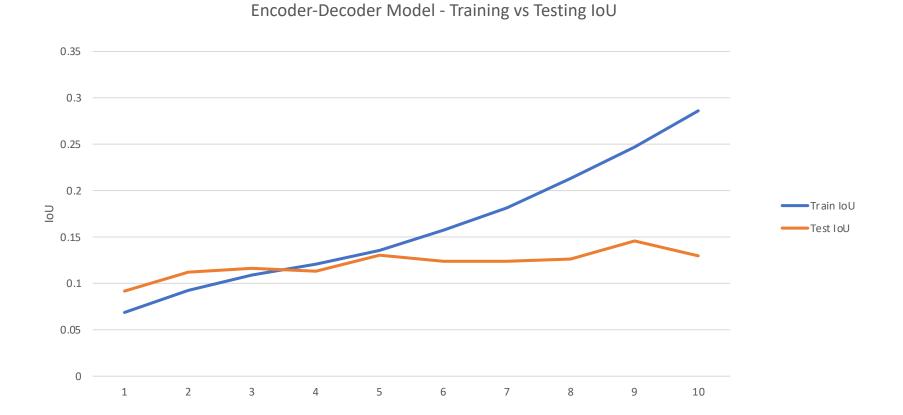
def forward(self, image, expr):

for attention, EDattention, FFNN, norm1, norm2, norm3 in zip(self.attentions, self.EDattentions, self.FFNNs,

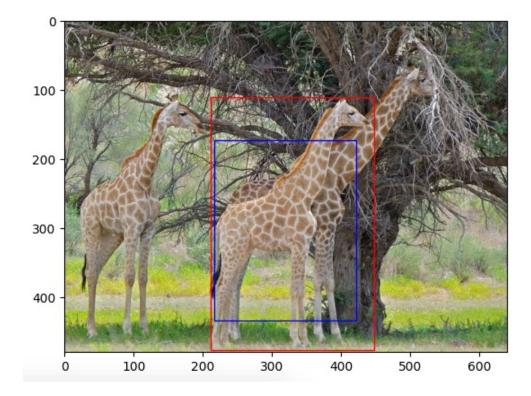
attn_output, _ = attention(expr, expr, expr) attn_output = norm1(expr + self.dropout(attn_output)) EDattn_output, _ = EDattention(attn_output, image, image) EDattn_output = norm2(attn_output + self.dropout(EDattn_output)) expr = norm3(self.dropout(FFNN(EDattn_output)) + EDattn_output)

return expr

1 – Encoder-Decoder Model - Performance



1 – Encoder-Decoder Model - Examples

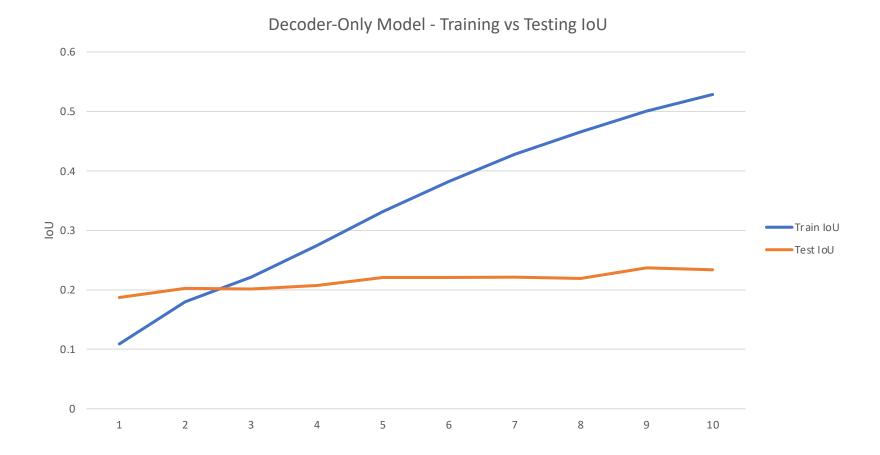


Expression: small giraffe in the middle first to us

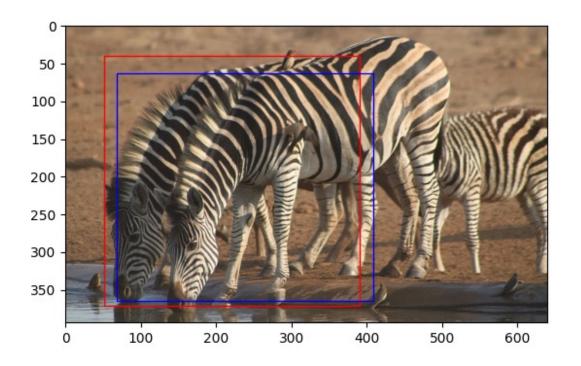
Expression: man in back of surfboard

2-Decoder-Only Model - Introduction

2-Decoder-Only Model - Performance



2-Decoder-Only Model - Examples

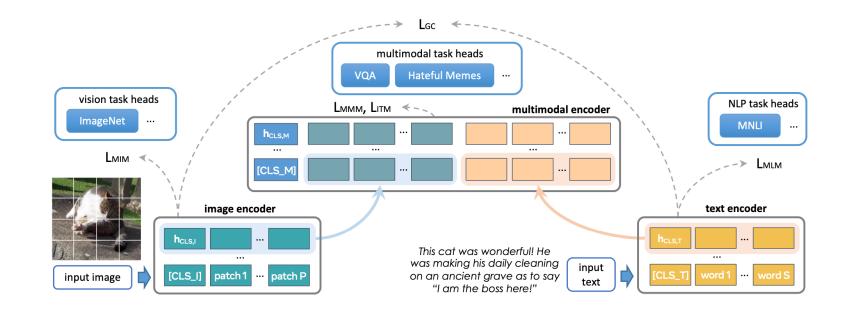


Expression: drinking zebra on the left

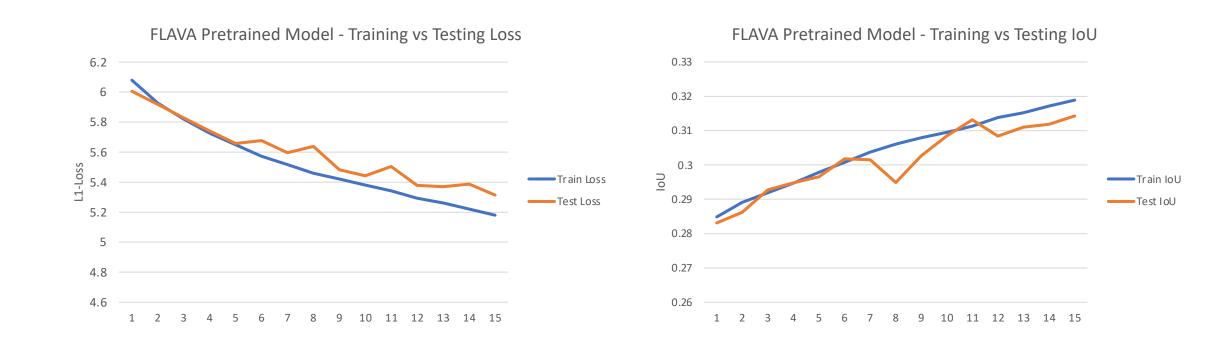
Expression: a man wearing black t shirt and holding a tennis ball in his hand

3 - Pre-trained FLAVA - Introduction

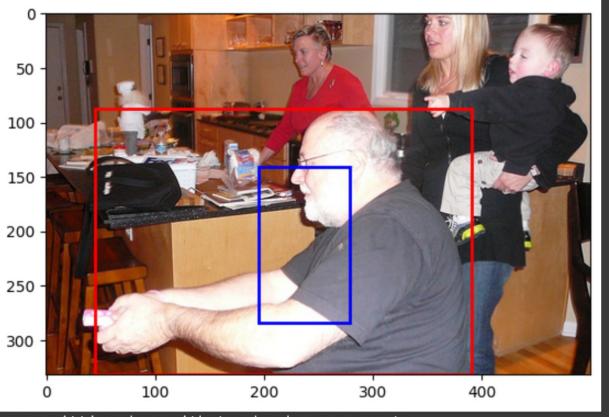
- Introduced by Singh et al in 2022; authors aimed to create a single universal model that is good at vision tasks, language tasks, and cross- and multi-modal vision and language tasks.
- FLAVA uses ViT to extract unimodal image representations, unimodal text representations, and fuse and align the image and text representations.
- During multimodal pretraining, authors trained for 46000 epochs.
- We trained our own prediction head for the REC task

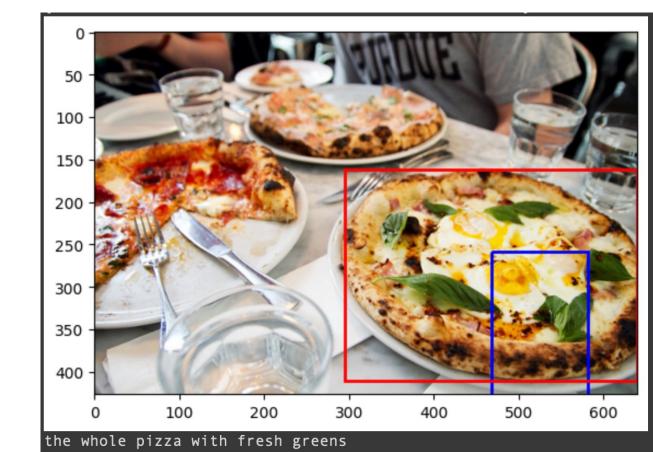


3- Pre-trained FLAVA - Performance



3 - Pre-training FLAVA – Examples





Improvements

- Train on more data
 - Pre-trained models requires more epoch (at least hundreds) and data for fine-tuning
 - Non-pretrained models with specific task still requires at least millions of image-text pairs
- Get GPU access
 - The current computation cost is too high, and we cannot perform larger scale training, which results in a subpar performance
- Develop a better approach for multimodality fusion
 - Currently the fusion is done using multiheaded attentions. There are more ways to broadcast the text query signals to the images so that the multimodal inputs can be aligned better